Insight into Bamboo-based Fermented Foods by Galo (Sub-tribe) of Arunachal Pradesh, India

Arindam Roy¹, Susmita Roy², Chandan Rai¹

¹Assistant Professor, Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, India
²Assistant Professor, Department of Botany, Netaji Nagar College for Women, Regent Estate, Kolkata, India

*Address for Correspondence: Dr. Arindam Roy, Asst. Professor, Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, India

Received: 07 March 2017/Revised: 06 May 2017/Accepted: 24 June 2017

ABSTRACT- Fermented foods play an important role in the social fabrication of a large number of populations throughout the world. Fermented foods offer several advantages over the raw materials by improving nutritional quality, digestibility, sensory attributes, enhancing vitamins and micronutrients, reducing anti-nutrients and replenishing intestinal microflora. Bamboo is indispensable to the people of Asia, Africa and Latin America due to its versatile uses. India is the second largest bamboo producer of the world and North-eastern states of India contribute the most. Edible bamboo shoots being seasonal and perishable are fermented for their future consumption. Ethnic people of Arunachal Pradesh are credited for developing a multitude of traditional bamboo-based fermented foods. Besides above mentioned attributes, toxic cyanogenic glycosidic compounds present in bamboo shoot can be destroyed during fermentation. Among the various tribes residing in Arunachal Pradesh, Galo is a culturally rich sub-tribe descending from Adi tribe. This article gives an overview of various bamboo based fermented foods prepared by Galo sub-tribe of Arunachal Pradesh.

Key-words- Bamboo shoot, Fermented food, Ethnic people, Galo sub-tribe, Cyanogenic glycosides

INTRODUCTION

Arunachal Pradesh is the largest among the North-eastern states of India covering a total area of 83,743 sq. km and according to 2011 census report inhabited by 1,382,611 populations. It possesses a rich ecological, floral and faunal biodiversity and contributes most to the Eastern Himalayan Biodiversity Hotspot. The mesmerizing scenic beauty of this state is magnified by several ethnic communities having their distinct culture, custom and food habit. At present there are 25 major tribes and about 125 sub-tribes residing in this state [¹]. It is generally accepted that the tribes of Arunachal Pradesh belong to the Tibeto-Burman group [²]. Having close proximity with nature, they are heavily dependent on the natural resources for their sustenance and livelihood. Their strong curiosity and keen observation of the nature, natural resources and natural phenomenon have inculcated into them a strong traditional knowledge system that is being transferred to the next generation from time immemorial.

Galo is one of the important sub-tribes inhabiting mainly the West Siang district and adjacent part of the East Siang and Upper Subansiri district of Arunachal Pradesh [³]. Galo sub-tribe has descended from Adi tribe and they belong to the Tani group. Complex hill system and wide range of elevation has divided this state into varying agro-climatic zones viz., tropical, sub-tropical, temperate and alpine zones. Temperate and humid tropical climate has endowed the lower sub-Himalayan regions with diverse species of bamboo. Abundance of locally available bamboo plays an integral part in the culture, tradition and custom of ethnic peoples of this region. A total of 1200-1500 species of bamboo under 60-70 genera are known to exist worldwide [⁴] of which around 125 species under 23 genera grow in India. North Eastern states of India represent 84 species of bamboo resources [⁵]. The common species of bamboo found in this region are Bambusa tulda, B. pallida, Dendrocalamus hamiltonii, D. hookeri, Pseudostachyum polymorphum, Arundinaria sp. etc. Of these young shoots of B. tulda and D. hamiltonii are popular as edible [⁶]. However massive deforestation for construction of road and building is a threat for their ecological distribution. Due to its very fast growth bamboo is preferred all over the world for reforestation. Rapid in vitro propagation of Bambusa vulgaris, commonly called Buddha bamboo, is
possible with addition of cytokines viz., IAA, NAA and 2,4-D \[7\]. Bamboo is closely associated with the livelihood of peoples of Asia, Africa and Latin America due to its versatile uses. Tender, soft, crisp and ivory yellow coloured bamboo shoots emerging out from bamboo calm during monsoon is widely consumed as vegetables, pickles and fermented products by ethnic communities of Asia. High diversity of bamboo resources in North-eastern states of India plays a significant role in the food and nutritional security of the ethnic community residing in this area \[8\]. Locally available bamboo shoots being seasonally available and perishable are fermented for different periods in various traditional processes to increase their shelf life and delicacy. Though bamboo shoot fermentation by Nyishi, Adi and Apatani of Arunachal Pradesh has been well documented, no record from Galos could be found in the literature. This paper deals with the traditional processes employed in the fermentation of bamboo shoots to prepare various non-salted acidic end-products.

MATERIALS AND METHODS

Information of bamboo-based fermented foods was gathered in September, 2015 from male and female respondents of some galo families residing in Papumpare district of Arunachal Pradesh. The fresh bamboo shoots were collected from local market and some identified persons of the galo sub-tribe were requested to demonstrate the preparation of those fermented foods in their house hold.

Preparation of Kupe

During preparation of Kupe (Fig 1m), bamboo shoots are collected (1 a,b) in the morning and the outer covering of leaf sheaths are removed with a sharp object. Soft and tender bamboo shoot tips are separated from the more mature lower part of the shoot (Fig 1c) and washed with water. The whole shoot tip of about 15-20 cm length is then fermented or it may be sliced vertically and horizontally to make pieces before fermentation (Fig 1e). Fermentation can be done in two different ways. In the rural forest villages where bamboo is plenty and open field is available, fermentation is accomplished within traditional bamboo basket (eegin). Inside of the basket is first covered with leaves of locally available herbs (preferably ekkam leaves (Fig 1d); Phrynium sp.) and the whole or pieces of tender bamboo shoot tips are put into the basket. The open top of the basket is similarly covered with leaves to make it air-tight. Then heavy weight is put on the top preferably with large stones to drain off excess water oozing out during fermentation. The bamboo baskets are then kept inside pit near stream. In urban and suburban areas where pit and stream are not available, fermentation is carried out within pieces of mature bamboo having single node to make a cylinder with a single opening (Fig 1h,i). The bamboo shoots are then pressed tightly into this bamboo cylinder (Fig 1j), little water added (Fig 1k) and the open mouth of the cylinder is covered with ekkam or banana leaves, to make it air tight (Fig 1l). The bamboo cylinders are then kept in moist places near stream or within pit. After 15-30 days of fermentation, the product is ready for consumption. The product remains fit for consumption even for 1-2 years if air tight condition of the basket is maintained after removing batches of kupe for consumption. Now-a-days the product is packed with ekkam leaves and kept within air-tight glass or plastic container in urban and sub-urban areas. Kupe is moist and creamish in colour. It is consumed raw or delicious curry is made with vegetables, meat and fish.

Preparation of eepe

Kupe is sun dried for 7-10 days to make eepe (Fig 1n). Eepe is dark brown in colour. It is more pungent and has more shelf life than kupe.

Preparation of eeku

After removing the top most tender shoot for kupe, the more mature lower portion is used for preparation of eeku (Fig 1o). Outer leaf sheaths are removed and hard nodes of the stem are generally discarded. The internodes are cleaned with water and sliced and chopped into small pieces (Fig 1f,g). Fermentation procedure and storage of eeku is similar to kupe. However, fermentation period may be little longer than kupe owing to more mature fibre in the raw material. Eeku is also moist and creamish in colour. It is consumed raw or used to prepare curry with vegetables, meat and fish.

Preparation of eep

Eeku is sun dried for 7-10 days to make eep (Fig 1p). It is more pungent and has more shelf life than eeku. Eep is light brown in colour and the dried chips are smaller than that of eepe.
Fig 1 (a-p): Processing of bamboo shoot to prepare fermented products by Galo sub-tribe of Arunachal Pradesh, India

a: A Galo woman holding a eegin filled with bamboo shoot, b: A bamboo shoot, c: Soft shoot tip separated from more mature lower part, d: Ekkam leaves (Phrynium sp.; Family Marantaceae), e: Slicing of soft shoot tip for kupe, f: Slicing of mature lower portion of shoot tip for eeku, g: Sliced shoots chopped into small pieces, h: Cutting of mature bamboo, i: Bamboo cylinder with a single node and a single opening, j: Sliced shoots pressed tightly into bamboo cylinder, k: Addition of water, l: Cylinders covered with ekkam leaves to make air tight, m: Kupe, n: Eepe, o: Eeku, p: Eep
RESULTS AND DISCUSSION
The ethnic people of North-eastern states of India are credited for traditional preparation of a number of bamboo based fermented foods (Table 1.) Four different types of fermented products viz., *kupe, eepe, eeku* and *eep* from bamboo shoots are prepared by *Galos* (Fig 1m-p.) in rainy season when sprouting occurs. *Dendrocalamus hamiltonii, D. hookeri, D. giganteus, D. longispathus, Bambusa balcooa, B. pallida* and *Melocanna baccifera* are the most preferred bamboo species for fermentation. These fermented products are boiled with salted water and cooked with vegetables, Mithun (*Bos frontalis*), chicken or fish to make curry.

The ethnic people of India and their traditional wisdom is a treasure for the scientific community as they are well aware of the sustainable uses of natural products. An ethnic group (also called indigenous) shares a common ancestral and geographical origin and inherits similar culture, custom and language. Their physical appearance, art and craft, dress, cuisine, music, religious and mythological belief are also common. The indigenous or ethnic people live in complete harmony to the nature adopting the art of living in extreme hostile natural conditions. Around 300 million ethnic or indigenous people are estimated to be present in the world. India is proud of 227 ethnic groups belonging to 573 tribal communities estimating a total of around 68 million people [9]. They collect wild edible plants including their shoot, leaves, fruits, flowers, tubers or seeds from forests for their daily needs. The flower, fruits and tubers are generally eaten raw while others boiled with water or fermented. Simple processing of the raw materials devoid of any food additive or preservative maintains high nutrition value of the finished products. Consumption of fermented foods which involve natural fermentation with mixed flora is an integral part of their religious ceremonies, culture and tradition. During food fermentation raw materials are acted upon by microorganisms or their enzymes producing desirable biochemical changes. While some of these modifications contribute organoleptic qualities including texture, flavor, aroma and colour, others enhance nutritional value by concentrating proteins, essential amino acids, free fatty acids, vitamins, minerals and antioxidants. Ethnic groups residing in different states of North-east India process locally available bamboo shoots in various ways for production of fermented foods. More than 66% of bamboo species in India is represented by North-east India covering an area of around 18.4 million hectares. Freshly harvested young and tender bamboo shoots provide them proteins, carbohydrates, B-vitamins such as thiamin, riboflavin, niacin, pyridoxine and pantothenic acid, minerals such as potassium, manganese, copper, calcium, iron and phosphorus, dietary fibers, phytosterols, phenols and little fat [10]. Free amino acids content has been found to increase during fermentation [11]. Some species of bamboo shoots viz., *Phyllostachys pubescens* and *Phyllostachys nigra* contain antioxidant and angiotensin converting enzyme inhibition activity [12].

Table 1: Bamboo-based fermented foods of North-eastern states of India

<table>
<thead>
<tr>
<th>Fermented product</th>
<th>Nature of product</th>
<th>Name of the state</th>
<th>Ethnic group</th>
<th>Fermenting microorganism</th>
<th>Fermentation period</th>
<th>Fermentation vessel</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastanga/Bastenga</td>
<td>Sun dried solid mass</td>
<td>Nagaland</td>
<td>Naga</td>
<td>LAB</td>
<td>2 weeks</td>
<td>Conical bamboo basket lined with banana leaves having a hole at the bottom. Jars and bamboo tubes (chunga)</td>
<td>13-14</td>
</tr>
<tr>
<td>Bastangapani</td>
<td>Liquid separated during fermentation of bastanga and traditionally stored in jar made of gourd</td>
<td>Nagaland</td>
<td>Naga</td>
<td>LAB</td>
<td>2 weeks</td>
<td>As in Bastanga</td>
<td>13-14</td>
</tr>
<tr>
<td>Ekhung/Ekung</td>
<td>Moist solid mass</td>
<td>Arunachal Pradesh</td>
<td>Nyishi, Adi</td>
<td>Lactobacillus plantarum, L. brevis, L. casei, Tetragenococcus halophilus</td>
<td>1-3 months</td>
<td>Bamboo basket (papur) kept in pit. One side open hollow bamboo stem (edung)</td>
<td>14-15</td>
</tr>
<tr>
<td>Location</td>
<td>Type of Mass</td>
<td>Producers</td>
<td>Bacteria</td>
<td>Aging Period</td>
<td>Process Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eup/Eyup</td>
<td>Sun dried solid mass</td>
<td>Arunachal Pradesh, Nyishi, Adi</td>
<td>Lactobacillus plantarum, L. fermentum</td>
<td>1-3 months</td>
<td>Bamboo basket (papur) kept in pit. One side open hollow bamboo stem (edung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poka Khorisa</td>
<td>Moistened solid mass</td>
<td>Assam, Assamese, Garo, Rabha</td>
<td>Lactobacillus plantarum</td>
<td>6-7 days</td>
<td>Earthen pot (Koloh) covered with banana leaves kept in kitchen. Covered bamboo cylinder kept under pond or spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khorisa</td>
<td>Sun dried solid mass</td>
<td>Assam, Assamese, Garo, Rabha</td>
<td>Lactobacillus plantarum</td>
<td>6-7 days</td>
<td>Sun dried on bamboo trays called saloni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heccha</td>
<td>Moist solid mass</td>
<td>Arunachal Pradesh, Apatani</td>
<td>Lactobacillus plantarum, Leuconostoc sp.</td>
<td>1-2 months</td>
<td>Bamboo basket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hikku</td>
<td>Moist solid mass</td>
<td>Arunachal Pradesh, Apatani</td>
<td>LAB</td>
<td>1-2 months</td>
<td>Bamboo basket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirring</td>
<td>Moist solid mass</td>
<td>Arunachal Pradesh, Apatani, Nyishi</td>
<td>Lactobacillus plantarum, L. lactis</td>
<td>1-3 months</td>
<td>Bamboo basket kept in pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iku</td>
<td>Moist solid mass</td>
<td>Arunachal Pradesh, Apatani</td>
<td>LAB</td>
<td>1-2 months</td>
<td>Bamboo basket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung-siej</td>
<td>Moist solid mass</td>
<td>Meghalaya, Khasi</td>
<td>LAB</td>
<td>1-2 months</td>
<td>Green hollow bamboo stem (Traditional process); Glass bottle (Urban modification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesu</td>
<td>Moist solid mass</td>
<td>Darjeeling hills (West Bengal), Sikkim</td>
<td>Lactobacillus plantarum, L. brevis, L. curvatus, Leuconostoc citreum, Leuconostoc citreum, Pediococcus pentosaceous</td>
<td>7-15 days</td>
<td>Green hollow bamboo stem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miyamikhri</td>
<td>Moist solid mass</td>
<td>Assam, Dimasa</td>
<td>LAB</td>
<td>4-5 days</td>
<td>Earthen pot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soibum</td>
<td>Moist solid mass</td>
<td>Manipur, Meitei</td>
<td>Lactobacillus plantarum, L. brevis, L. coryniformis, L. delbrueckii, Leuconostoc fallax, L. lactis, L. mesenteroides</td>
<td>3-12 months</td>
<td>Traditional bamboo chamber (Noney/Kwatha type); Bulky roasted earthen pot (Andro type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soidon</td>
<td>Moist solid mass</td>
<td>Manipur</td>
<td>Meetei</td>
<td>3-7 days</td>
<td>Earthen pots (Traditional process); Earthen pot or plastic container layered with polythene cover (Modified process)</td>
<td>14-15, 21</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Soidon mahi</td>
<td>Liquid separated after fermenting a mixture of Garcinia pedunculata Roxb. fruits, rice water and Schizostachyum capitatum. Liquid starter used to prepare soidon</td>
<td>Manipur</td>
<td>Meetei</td>
<td>Bacillus subtilis, Lactobacillus brevis and L. plantarum</td>
<td>As in soidon</td>
<td>As in soidon</td>
<td>15, 21-22</td>
</tr>
<tr>
<td>Soijim</td>
<td>Liquid separated during Andro type of bamboo fermentation to prepare Soibum. (used as starter of soidon)</td>
<td>Manipur</td>
<td>Meetei</td>
<td>LAB</td>
<td>As in soibum</td>
<td>As in soibum</td>
<td>13-15, 21</td>
</tr>
<tr>
<td>Tuaithur</td>
<td>Moist solid mass</td>
<td>Mizoram, Manipur</td>
<td>Hrangkhol, Baite, Hmar</td>
<td>Lactobacillus plantarum, L. brevis, Pediococcus pentosaceus, Lactococcus lactis, Bacillus subtilis, B. firmus, B. circulans and B. sphaericus</td>
<td>6-7 days</td>
<td>Bamboo vessel</td>
<td>14</td>
</tr>
<tr>
<td>Tuairoi</td>
<td>Sun dried solid mass of tuaithur</td>
<td>Mizoram, Manipur</td>
<td>Hrangkhol, Baite</td>
<td>Same as tuaithur</td>
<td>6-7 days</td>
<td>Bamboo vessel</td>
<td>14</td>
</tr>
</tbody>
</table>
Microorganisms associated with bamboo shoot fermentation

Ethnic people of North-east India produce a variety of bamboo-based fermented foods in different ways using handmade containers of bamboo and cane. All are non-salted, acid fermentation dominated by lactic acid bacteria coming from the raw materials (Table 1). However, some ethnic groups add liquid separated during previous batch of bamboo shoot fermentation as starter to hasten the fermentation period as well as to make quality products. This method of adding starter culture is being practiced during production of soibum and soidon by Meetei tribe in the Bishnupur village of Manipur. Soidon mahi and soijim are starter for soidon and soibum, respectively. Soidon mahi is prepared by fermenting a mixture of acidic juice extract of Garcinia pedunculata Roxb. fruits, rice water and Schizostachyum capitatum. Microflora associated with soidon mahi are Bacillus cereus, B. subtilis, P. pumilus, Lactobacillus brevis, L. plantarum and Pseudomonas fluorescens. Of these B. subtilis, L. brevis and L. plantarum were presumed to have predominant role in fermentation. Dominant microflora associated with bamboo shoot fermentation are Lactobacillus plantarum, L. brevis, L. casei, L. fermentum, L. lactis, L. curvatus, L. coryniformis, L. delbrueckii, Leuconostoc citreum, L. fallax, L. lactis, L. mesenteroides, Lactococcus lactis, Pediococcus pentosaceous, Enetrococcus durans, Streptococcus lactis, Bacillus subtilis, B. firmus, B. circulans, B. sphaericus, B. licheniformis, B. coagulans, Tetragenococcus halophilus and yeasts Candida, Saccharomyces and Torulopsis.

Cyanogenic glycosides and Fermentation

Bamboo shoots contain high amount of cyanogenic glycosides as well as corresponding beta-galactosidase that breaks down glycosidic bond to produce a sugar and acyanohydrin that is rapidly degraded to hydrogen cyanide and an aldehyde or a ketone. Hydrogen cyanide present in bamboo shoot is a neurotoxin resulting high blood pressure, dizziness, headache, stomach pain as well as complications in child birth like miscarriage and abnormal child birth. Traditional wisdom of Boiling and fermentation reduce cyanide content significantly. During traditional fermentation small holes are made in one side open hollow cylindrical bamboo stem (edung), chopped bamboo shoots are packed inside and the bamboo cylinders are kept near stream of water facilitating leaching of toxic cyanide compounds from the fermenting materials. However, this traditional processing is fast eroding and being replaced by glass bottles or plastic containers. The younger generation finds the modified fermentation process less time consuming and the products more shelf-stable.

Functional attributes of fermenting microorganisms

Other than acidifying the raw bamboo shoots and extending their shelf life, fermenting microorganisms show various activities. Phytic acid in bamboo shoot acts as an antinutritional factor chelating calcium, zinc, iron and copper resulting in their deficiency in the diet. Lactobacillus plantarum isolated during fermentation to prepare ekung and eup showed significant phytic acid degradation. Lactobacillus brevis in soidon and hirring possessed similar property. Production of lactic acid during degradation of sucrose present in bamboo shoot acidifies the fermented product inhibiting pathogenic bacteria. Acid and bile tolerance are also important characteristics of fermenting bacteria exemplified by Lactobacillus plantarum, L. brevis, L. casei, L. fermentum. Lactobacillus plantarum and L. brevis from soibum showed high hydrophobicity and thus are good colonizer of gastroenterocytes.

CONCLUSIONS

The ethnic people of Arunachal Pradesh possess a rich tradition of using tender bamboo shoot to produce various fermented products. The various tribes of Arunachal Pradesh like Nyshi, Adi, Apatani produce different types of bamboo-based fermented foods viz., Ekhung/Ekung, Eup/Eyup, Heccha, Hikku, Hirring, Iku in bamboo basket or mature bamboo stem. Fermented bamboo shoots are popular among other ethnic groups of North-east India. Bamboo shoot is a rich source of essential amino acids, free fatty acids, phytosterols, minerals, edible fibres and phenolic compounds but presence of cyanogenic glycoside compounds is a major public health concern. The traditional process of fermentation has been found to reduce the amount of toxic substances present. Thus traditionally fermented bamboo shoots may be an important food additive. Galo is a sub-tribe of Adi tribal community. They also prepare fermented bamboo shoots for future use. In this research four different bamboo shoot fermented products prepared by Galos have been documented. Though preservation is the primary concern in bamboo shoot fermentation, reduction of toxic cyanogenic glycosides using the fermenting microflora should be the thrust area of future scientific research.

ACKNOWLEDGMENT

We are grateful to Mrs. Pagi Ado and Mr. Nyumjum Ado, Itanagar for their kind cooperation. The corresponding author is grateful to UGC, New Delhi for financial support in the form of Minor Research Project (Sanction No. PSW-064/13-14 dated 18th March, 2014).

REFERENCES

Malik V, Devi U, Yadav RNS, and Mahanta J. Isolation, purification and functional assessment of anti-bacterial bio-metabolite from wild-type Lactobacillus from bamboo shoots.

Narzary Y, Brahma J, Brahma C, and Das S. Changes in nutrient components during ageing of emerging juvenile bamboo shoots.

Badwaik SL, Borah KP, and Deka CS. Production and purification of anti-bacterial bio-metabolite from wild-type Lactobacillus. Isolated from fermented bamboo shoots: future suggestions and a proposed system for secondary metabolite on-site recovery during continuous fermentation.

